DOI: 10.3390/sym16030352 ISSN: 2073-8994

Adaptive Feedback Control of Nonminimum Phase Boost Converter with Constant Power Load

Khalil Jouili, Monia Charfeddine, Mohammed Alqarni
  • Physics and Astronomy (miscellaneous)
  • General Mathematics
  • Chemistry (miscellaneous)
  • Computer Science (miscellaneous)

The inherent negative impedance characteristics of a Constant Power Load (CPL) pose a potential threat to the stability of the bus voltage in a DC microgrid consisting of a symmetrical parallel boost converter. We suggest an adaptive feedback control technique using the input–output exact feedback linearization theory for a boost converter integrated into a DC microgrid to improve the stability of the DC bus voltage. This approach involves a transformation of the model into a Brunovsky canonical form, effectively addressing the nonlinear challenges arising from the CPL and the nonminimum phase characteristics of the boost converter. Subsequently, guided by the Lyapunov approach, an adaptation law is established to fine-tune the controller’s gain vector, facilitating the tracking of a predefined linearizing feedback control. We methodically create a method to choose the gains of the adaptive controller in order to guarantee an adequate output response. We validate our suggested controller’s performance using simulation.

More from our Archive