DOI: 10.3390/molecules28237906 ISSN: 1420-3049

Activation of Peracetic Acid by CoFe2O4 for Efficient Degradation of Ofloxacin: Reactive Species and Mechanism

Rong Li, Xing Lu, Jinxiang Gao, Yifan Chen, Shunlong Pan
  • Chemistry (miscellaneous)
  • Analytical Chemistry
  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Molecular Medicine
  • Drug Discovery
  • Pharmaceutical Science

Peroxyacetic acid (PAA)-based advanced oxidation processes (AOPs) have attracted much attention in wastewater treatment by reason of high selectivity, long half-life reactive oxygen species (ROS), and wider applicability. In this study, cobalt ferrite (CoFe2O4) was applied to activate PAA for the removal of ofloxacin (OFX). The degradation of OFX could reach 83.0% via the CoFe2O4/PAA system under neutral conditions. The low concentration of co-existing anions and organic matter displayed negligible influence on OFX removal. The contributions of hydroxyl radicals (·OH), organic radicals (R-O·), and other reactive species to OFX degradation in CoFe2O4/PAA were systematically evaluated. Organic radicals (especially CH3C(O)OO·) and singlet oxygen (1O2) were verified to be the main reactive species leading to OFX destruction. The Co(II)/Co(III) redox cycle occurring on the surface of CoFe2O4 played a significant role in PAA activation. The catalytic performance of CoFe2O4 remained above 80% after five cycles. Furthermore, the ecotoxicity of OFX was reduced after treatment with the CoFe2O4/PAA system. This study will facilitate further research and development of the CoFe2O4/PAA system as a new strategy for wastewater treatment.

More from our Archive