Takahiro Mochizuki, Toshiki Tanigawa, Seiya Shindo, Momoka Suematsu, Yuki Oguchi, Tetsuo Mioka, Yusuke Kato, Mina Fujiyama, Eri Hatano, Masashi Yamaguchi, Hiroji Chibana, Fumiyoshi Abe

Activation of CWI pathway through high hydrostatic pressure, enhancing glycerol efflux via the aquaglyceroporin Fps1 in Saccharomyces cerevisiae

  • Cell Biology
  • Molecular Biology

The fungal cell wall is the initial barrier for the fungi against diverse external stresses, such as osmolarity changes, harmful drugs, and mechanical injuries. This study explores the roles of osmoregulation and the cell-wall integrity (CWI) pathway in response to high hydrostatic pressure in the yeast Saccharomyces cerevisiae. We demonstrate the roles of the transmembrane mechanosensor Wsc1 and aquaglyceroporin Fps1 in a general mechanism to maintain cell growth under high-pressure regimes. The promotion of water influx into cells at 25 MPa, as evident by an increase in cell volume and a loss of the plasma-membrane eisosome structure, promotes the activation of Wsc1, an activator of the CWI pathway. Phosphorylation of the downstream mitogen-activated protein kinase Slt2 was increased at 25 MPa. Glycerol efflux increases via Fps1 phosphorylation, which is initiated by downstream components of the CWI pathway and contributes to the reduction in intracellular osmolarity under high pressure. The elucidation of the mechanisms underlying adaption to high pressure through the well-established CWI pathway could potentially translate to mammalian cells and provide novel insights into cellular mechanosensation.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive