DOI: 10.1182/blood.v94.11.3791 ISSN:

Activated Platelets Release Two Types of Membrane Vesicles: Microvesicles by Surface Shedding and Exosomes Derived From Exocytosis of Multivesicular Bodies and -Granules

Harry F.G. Heijnen, Anja E. Schiel, Rob Fijnheer, Hans J. Geuze, Jan J. Sixma
  • Cell Biology
  • Hematology
  • Immunology
  • Biochemistry


Platelet activation leads to secretion of granule contents and to the formation of microvesicles by shedding of membranes from the cell surface. Recently, we have described small internal vesicles in multivesicular bodies (MVBs) and -granules, and suggested that these vesicles are secreted during platelet activation, analogous to the secretion of vesicles termed exosomes by other cell types. In the present study we report that two different types of membrane vesicles are released after stimulation of platelets with thrombin receptor agonist peptide SFLLRN (TRAP) or -thrombin: microvesicles of 100 nm to 1 μm, and exosomes measuring 40 to 100 nm in diameter, similar in size as the internal vesicles in MVBs and -granules. Microvesicles could be detected by flow cytometry but not the exosomes, probably because of the small size of the latter. Western blot analysis showed that isolated exosomes were selectively enriched in the tetraspan protein CD63. Whole-mount immuno-electron microscopy (IEM) confirmed this observation. Membrane proteins such as the integrin chains IIb-β3 and β1, GPIb, and P-selectin were predominantly present on the microvesicles. IEM of platelet aggregates showed CD63+ internal vesicles in fusion profiles of MVBs, and in the extracellular space between platelet extensions. Annexin-V binding was mainly restricted to the microvesicles and to a low extent to exosomes. Binding of factor X and prothrombin was observed to the microvesicles but not to exosomes. These observations and the selective presence of CD63 suggest that released platelet exosomes may have an extracellular function other than the procoagulant activity, attributed to platelet microvesicles.

More from our Archive