DOI: 10.1093/bioinformatics/btae494 ISSN: 1367-4811

Accelerated dimensionality reduction of single-cell RNA sequencing data with fastglmpca

Eric Weine, Peter Carbonetto, Matthew Stephens

Abstract

Summary

Motivated by theoretical and practical issues that arise when applying Principal component analysis (PCA) to count data, Townes et al. introduced “Poisson GLM-PCA”, a variation of PCA adapted to count data, as a tool for dimensionality reduction of single-cell RNA sequencing (scRNA-seq) data. However, fitting GLM-PCA is computationally challenging. Here we study this problem, and show that a simple algorithm, which we call “Alternating Poisson Regression” (APR), produces better quality fits, and in less time, than existing algorithms. APR is also memory-efficient and lends itself to parallel implementation on multi-core processors, both of which are helpful for handling large scRNA-seq datasets. We illustrate the benefits of this approach in three publicly available scRNA-seq datasets. The new algorithms are implemented in an R package, fastglmpca.

Availability and implementation

The fastglmpca R package is released on CRAN for Windows, macOS and Linux, and the source code is available at github.com/stephenslab/fastglmpca under the open source GPL-3 license. Scripts to reproduce the results in this paper are also available in the GitHub repository and on Zenodo.

More from our Archive