DOI: 10.3390/en18051075 ISSN: 1996-1073

Absorption and Desorption Heat of Carbon Dioxide Capture Based on 2-Amino-2-Methyl-1-Propanol

Jia Guo, Xin Wang, Yi Li, Qingfang Li, Haili Liu, Hui Wang

In chemical absorption for carbon capture, the regeneration heat is a key factor determining solvent regeneration energy consumption, and the sterically hindered amine 2-amino-2-methyl-1-propanol (AMP) has great potential for application. In this paper, a CO2 reaction heat measurement system designed and constructed by our team was used to perform a comparative study on AMP and monoethanolamine (MEA). Moreover, five additives—MEA, diglycolamine (DGA), diethanolamine (DEA), methyldiethanolamine (MDEA), and piperazine (PZ)—were introduced into AMP-based solutions to investigate the promotion performance of these blended solvents. The results revealed that although AMP exhibited a slower absorption rate compared to MEA, it demonstrated a higher CO2 loading capacity and cyclic capacity, as well as a lower reaction heat, making it advantageous in terms of regeneration energy consumption. At the same total concentration, the absorption capacity of blended solutions (excluding AMP-MEA solutions) was generally lower than that of single-component AMP solutions. Among these additives, MEA and PZ could enhance the absorption rate clearly yet increase the reaction heat at the same time; DGA and DEA could decrease the overall absorption performance. Generally, AMP-MDEA solutions showed the best desorption performance, with the 15 wt% AMP + 5 wt% MDEA mixture demonstrating the lowest regeneration heat and good cyclic capacity.

More from our Archive