DOI: 10.1515/cti-2023-0051 ISSN: 2569-3263

A system mapping activity to visualize lithium’s interconnectedness to societal and environmental aspects of the green energy transition

Seamus Delaney, Scott Donnelly, Emily Rochette, MaryKay Orgill

Abstract

Lithium’s role in the global green energy transition provides an engaging context to visualize the interconnectedness of chemistry to seismic shifts taking place in society. Lithium has seen a dramatic increase in utilization, but given lithium’s current low rates of recyclability, this development is exacerbating the e-waste problem. Equally important, we posit that lithium extraction, from either brine or ore, and the associated impacts on the environment and local communities should not be so easily decoupled from the shift in human behaviors causing its demand. Presented here is a mapping activity that was trialed in professional learning workshops organized in New Zealand for secondary/high school chemistry teachers. In their mapping activity response, the teachers were able to connect typical school chemistry content (batteries, chemical processes) with environmental (planetary systems) and social, economic, and ethical considerations (useful products, unintended consequences, inequity in access to water) of the ongoing electrification of society. The teachers indicated a positive intention to utilize the activity, or one similar with a different chemical process or product, in their own classrooms. A school-ready version of the activity is provided in the supplementary information, which was revised based on feedback from the teachers attending the workshops.

More from our Archive