DOI: 10.2174/0115680266332163241127114029 ISSN: 1568-0266

A Review on Medicinal Approaches of Novel Imatinib Derivatives

Suresh Kumar, Gaurav Agarwal, Kavita Sangwan

Phenyl amino pyrimidine attracts researchers due to its versatile scaffold and medicinal significance. This significant moiety present in the Imatinib contributed to medicinal chemistry. In this manuscript, we reviewed various derivatives of Imatinib containing 2-phenylaminopyrimidine, which has a variety of roles, especially in the anti-cancer category. This manuscript aims to prepare a scientific report that underscores the novel Imatinib derivatives in the field of chemistry for various activities such as anti-cancer, anti-microbial, and miscellaneous focused on cardiovascular, anti-platelets, and anti-parasitic, etc. Finally, this manuscript may attract researchers for new structure design, and the development of novel phenyl amino pyrimidine scaffolds that are more active and less harmful. We propose a compilation and analysis of around 100 Imatinib derivatives having main chromatophores, such as phenylaminopyrimidine. A large number of researchers are interested in Imatnib-based analogs as they have wide biological potential in the largely developing chemical world of the heterocyclic moiety. The phenylamino pyrimidine moiety became an important moiety for researchers to discover combinational libraries and implement the efforts in search of the lead entities. Phenylaminopyrimidine has been manifesting to be an effective moiety in the current respective disease scenario. It has been discovered that phenylaminopyrimidine and its derivatives have an extensive spectrum of pharmacological potential with numerous applications in academic interest, in the pharmaceutical industry, medicinal chemistry, etc. Imatinib containing phenylaminopyrimidine and its novel synthetic derivatives are a prominent heterocyclic compound class with intriguing use in medicinal chemistry. Thus, in brief, attention should be given to other chemical approaches for synthesizing novel compounds containing phenylaminopyrimidine moiety, hence potentiating their efficacy.

More from our Archive