DOI: 10.3390/drones7120709 ISSN: 2504-446X

A Review of Icing Research and Development of Icing Mitigation Techniques for Fixed-Wing UAVs

Liang Zhou, Xian Yi, Qinglin Liu
  • Artificial Intelligence
  • Computer Science Applications
  • Aerospace Engineering
  • Information Systems
  • Control and Systems Engineering

With the continuous expansion of Unmanned Aerial Vehicle (UAV) applications, the threat of icing on UAV flights has garnered increased attention. Understanding the icing principles and developing anti-icing technologies for unmanned aircraft is a crucial step in mitigating the icing threat. However, existing research indicates that changes in Reynolds numbers have a significant impact on the physics of ice accretion. Icing studies on aircraft operating at high Reynolds numbers cannot be directly applied to unmanned aircraft, and mature anti-icing/deicing techniques for manned aircraft cannot be directly utilized for UAVs. This paper firstly provides a comprehensive overview of research on icing for fixed-wing UAVs, including various methods to study unmanned aircraft icing and the identified characteristics of icing on unmanned aircraft. Secondly, this paper focuses on discussing UAV anti-icing/deicing techniques, including those currently applied and under development, and examines the advantages and disadvantages of these techniques. Finally, the paper presents some recommendations regarding UAV icing research and the development of anti-icing/deicing techniques.

More from our Archive