Kubilay Kaptan, Sandra Cunha, José Aguiar

A Review: Construction and Demolition Waste as a Novel Source for CO2 Reduction in Portland Cement Production for Concrete

  • Management, Monitoring, Policy and Law
  • Renewable Energy, Sustainability and the Environment
  • Geography, Planning and Development
  • Building and Construction

There is an increasing global recognition of the need for environmental sustainability in mitigating the adverse impacts of cement production. Despite the implementation of various carbon dioxide (CO2) mitigation strategies in the cement industry, such as waste heat recovery, the use of alternative raw materials and alternative fuels, energy efficiency improvements, and carbon capture and storage, overall emissions have still increased due to the higher production levels. The resolution of this matter can be efficiently achieved by the substitution of traditional materials with an alternative material, such as calcined clay (CC), construction and demolition waste (CDW), which have a significant impact on various areas of sustainable development, including environmental, economic, and social considerations. The primary objectives of employing CDW in the Portland cement production are twofold: firstly, to mitigate the release of CO2 into the atmosphere, as it is a significant contributor to environmental pollution and climate change; and secondly, to optimize the utilization of waste materials, thereby addressing the challenges associated with their disposal. The purpose of this work is to present a thorough examination of the existing body of literature pertaining to the partial replacement of traditional raw materials by CDW and the partial replacement of Portland cement by CDW and to analyze the resulting impact on CO2 emissions.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive