DOI: 10.3390/math13071098 ISSN: 2227-7390

A Principal Component Analysis-Based Feature Optimization Network for Few-Shot Fine-Grained Image Classification

Meijia Wang, Boyuan Zheng, Guochao Wang, Junpo Yang, Jin Lu, Weichuan Zhang

Feature map reconstruction networks (FRN) have demonstrated significant potential by leveraging feature reconstruction. However, the typical process of FRN gives rise to two notable issues. First, FRN exhibits high sensitivity to noise, particularly ambient noise, which can lead to substantial reconstruction errors and hinder the network’s ability to extract meaningful features. Second, FRN is particularly vulnerable to changes in data distribution. Owing to the fine-grained nature of the training data, the model is highly susceptible to overfitting, which may compromise its ability to extract effective feature representations when confronted with new classes. To address these challenges, this paper proposes a novel main feature selection module (MFSM), which suppresses feature noise interference and enhances the discriminative capacity of feature representations through principal component analysis (PCA). Extensive experiments validate the effectiveness of MFSM, revealing substantial improvements in classification accuracy for few-shot fine-grained image classification (FSFGIC) tasks.

More from our Archive