Elizabeth A. Sanli, Robert Brown, Derek Simmons

A Pilot Study to Assess the Feasibility of Comparing Ultra-High Pressure to Low-Pressure Fire Suppression Systems for a Simulated Indirect Exterior Attack

  • Earth and Planetary Sciences (miscellaneous)
  • Safety Research
  • Environmental Science (miscellaneous)
  • Safety, Risk, Reliability and Quality
  • Building and Construction
  • Forestry

Financial and human resource challenges constrain firefighting in rural communities. This can limit the approaches that can be used in a given residential fire situation. Effective use of portable, lower-cost equipment that would require fewer personnel and less water could greatly benefit rural communities. This study was conducted to assess the feasibility of comparing ultra-high-pressure to low-pressure fire suppression systems at low flow rates. The conditions used simulated an indirect exterior attack through a window. A purpose-built burn room and standardized class A fires were used to compare ultra-high-pressure and low-pressure systems at low flow rates. Temperatures in the burn room were recorded for each condition in triplicate. While neither operating condition resulted in full extinguishment of the fire, the ultra-high-pressure trials saw decreases in the proportion of starting temperature that were faster and of greater magnitude than for the low-pressure trials. This compares with earlier research, simulating a transitional attack that saw similar patterns for temperature cooling but resulted in extinguishment. This preliminary testing provides evidence that the burn container and room, as well as instrumentation and fuel load configurations, are appropriate for more extensive testing of such equipment for exterior fire suppression.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive