DOI: 10.3390/s23239508 ISSN: 1424-8220

A Novel Polymeric Membrane Sensor for Chlorhexidine Determination

Joanna Lenik, Karolina Sokal
  • Electrical and Electronic Engineering
  • Biochemistry
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry

In the present work, potentiometric sensors with polymer membranes used for chlorhexidine (CHXD) determination were developed. The polymer membranes were plasticized with bis(2-ethylheksyl)sebacate (DOS) or 2-nitrophenyloctyl ether (o-NPOE). The active compounds used in the membrane were cyclodextrins, crown ethers, and ion exchangers. The best-constructed electrode was based on neutral heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin with lipophilic salt (KTpClBP)—potassium tetrakis(4-chlorophenyl) borate—dissolved in plasticizer, DOS. The presented electrode is characterized by an average cationic slope of 30.9 ± 2.9 mV decade−1 within a linear range of 1 × 10−6 to 1 × 10−3 mol × L−1, while the value of the correlation coefficient is 0.9970 ± 0.0026. The response time was about 5 s when increasing the sample concentration and about 10 s when diluting the sample. The electrode potential is independent of the pH within a range of 4.0–9.5. The polymeric membrane sensor was successfully applied for assays of chlorhexidine digluconate in pure samples and pharmaceutical samples. The relative error from three replicate measurements was determined to be 1.1%. and the accuracy was RSD = 0.3–1.1%.

More from our Archive