A Novel Meta-Heuristic Algorithm Based on Birch Succession in the Optimization of an Electric Drive with a Flexible Shaft
Mateusz Malarczyk, Seiichiro Katsura, Marcin Kaminski, Krzysztof SzabatThe paper presents the application of a new bio-inspired metaheuristic optimization algorithm. The popularity and usability of different swarm-based metaheuristic algorithms are undeniable. The majority of known algorithms mimic the hunting behavior of animals. However, the current approach does not satisfy the full bio-diversity inspiration among different organisms. Thus, the Birch-inspired Optimization Algorithm (BiOA) is proposed as a powerful and efficient tool based on the pioneering behavior of one of the most common tree species. Birch trees are known for their superiority over other species in overgrowing and spreading across unrestricted terrains. The proposed two-step algorithm reproduces both the seed transport and plant development. A detailed description and the mathematical model of the algorithm are given. The discussion and examination of the influence of the parameters on efficiency are also provided in detail. In order to demonstrate the effectiveness of the proposed algorithm, its application to selecting the parameters of the control structure of a drive system with an elastic connection is shown. A structure with a PI controller and two additional feedbacks on the torque and speed difference between the drive motor and the working machine was selected. A system with rated and variable parameters is considered. The theoretical considerations and the simulation study were verified on a laboratory stand.