DOI: 10.3390/electronics13101875 ISSN: 2079-9292

A Nonlinear Control Design for Cooperative Adaptive Cruise Control with Time-Varying Communication Delay

Parisa Ansari Bonab, Arman Sargolzaei

Cooperative adaptive cruise control (CACC) is one of the main features of connected and autonomous vehicles (CAVs), which uses connectivity to improve the efficiency of adaptive cruise control (ACC). The addition of reliable communication systems to ACC reduces fuel consumption, maximizes road capacity, and ensures traffic safety. However, the performance, stability, and safety of CACC could be affected by the transmission of outdated data caused by communication delays. This paper proposes a Lyapunov-based nonlinear controller to mitigate the impact of time-varying delays in the communication channel of CACC. This paper uses Lyapunov–Krasovskii functionals in the stability analysis to ensure semi-global uniformly ultimately bounded tracking. The efficaciousness of the proposed CACC algorithm is demonstrated in simulation and through experimental implementation.

More from our Archive