DOI: 10.3390/wevj15050210 ISSN: 2032-6653

A Multi-Sensor 3D Detection Method for Small Objects

Yuekun Zhao, Suyun Luo, Xiaoci Huang, Dan Wei

In response to the limited accuracy of current three-dimensional (3D) object detection algorithms for small objects, this paper presents a multi-sensor 3D small object detection method based on LiDAR and a camera. Firstly, the LiDAR point cloud is projected onto the image plane to obtain a depth image. Subsequently, we propose a cascaded image fusion module comprising multi-level pooling layers and multi-level convolution layers. This module extracts features from both the camera image and the depth image, addressing the issue of insufficient depth information in the image feature. Considering the non-uniform distribution characteristics of the LiDAR point cloud, we introduce a multi-scale voxel fusion module composed of three sets of VFE (voxel feature encoder) layers. This module partitions the point cloud into grids of different sizes to improve detection ability for small objects. Finally, the multi-level fused point features are associated with the corresponding scale’s initial voxel features to obtain the fused multi-scale voxel features, and the final detection results are obtained based on this feature. To evaluate the effectiveness of this method, experiments are conducted on the KITTI dataset, achieving a 3D AP (average precision) of 73.81% for the hard level of cars and 48.03% for the hard level of persons. The experimental results demonstrate that this method can effectively achieve 3D detection of small objects.

More from our Archive