Hongran Guo, Jiuzeng Cui, Qian Li, Xuhui Liang, Junda Li, Bohua Yang, Peter Kalds, Yulin Chen, Yuxin Yang

A multi-omic assessment of the mechanisms of intestinal microbes used to treat diarrhea in early-weaned lambs

  • Computer Science Applications
  • Genetics
  • Molecular Biology
  • Modeling and Simulation
  • Ecology, Evolution, Behavior and Systematics
  • Biochemistry
  • Physiology
  • Microbiology

ABSTRACT Transplant of donor microbiota can significantly alter the structure of the host’s intestinal microbiota and alleviate early weaning stress. Screening for alternative-resistant products by transplanting fecal bacteria from healthy lambs is a current research trend in the livestock industry. In the present study, fecal microbiota transplantation was performed in lambs with diarrhea during early weaning. The transplanted fecal microbiota greatly reduced the diarrhea and serum inflammatory factor levels caused by early weaning. Transcriptome sequencing revealed that fecal microbiota transplantation alleviated colonic inflammation and increased the expression of colonic ion transport proteins. In addition, the levels of Streptococcus , Enterococcus, and Escherichia Shigella decreased in the jejunum, cecum, and colon of the lambs; meanwhile, the levels of Bifidobacterium and multiple secondary bile acids, such as ursodeoxycholic acid, increased in the colon. Furthermore, the abundance of Bifidobacterium was significantly negatively correlated with the diarrhea index. The fecal microbiota transplantation reshaped the intestinal microbiota of early-weaned lambs, protected the intestinal physiology and immune barrier, and reduced weaning stress. In addition to making available bacteriological products for controlling intestinal inflammation in young lambs, this study offers a theoretical framework and technical system for the mechanisms by which microbiota transplantation regulates intestinal health in young lambs. IMPORTANCE Before weaning, the digestive system of lambs is not well developed; hence, its resistance to infectious diseases is weak. Under intensive feeding systems, lambs can easily be stressed and the risk of bacterial infection is high, which causes diarrhea, which in turn may cause mortality and significant economic losses to the livestock industry. With the elimination of antibiotics in animal feed, the incidence of mortality due to intestinal illnesses in lambs has gradually increased. There are several types of probiotics routinely used in young animals, but the effects and processes of their usage have only been assessed in monogastric animals. The lack of data on ruminants, particularly sheep, has severely hampered the process of efficient and healthy sheep breeding. Therefore, there is an urgent need to identify effective and safe functional supplements for lambs.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive