Ismaila Mudi, Abarasi Hart, Andrew Ingram, Joseph Wood

A Kinetic Model of Furfural Hydrogenation to 2-Methylfuran on Nanoparticles of Nickel Supported on Sulfuric Acid-Modified Biochar Catalyst

  • Physical and Theoretical Chemistry
  • Catalysis
  • General Environmental Science

Lignocellulosic biomass can uptake CO2 during growth, which can then be pyrolysed into three major products, biochar (BC), syngas, and bio-oil. Due to the presence of oxygenated organic compounds, the produced bio-oil is not suitable for direct use as a fuel and requires upgrading via hydrodeoxygenation (HDO) and hydrogenation. This is typically carried out over a supported metal catalyst. Regarding circular economy and sustainability, the BC from the pyrolysis step can potentially be activated and used as a novel catalyst support, as reported here. A 15 wt% Ni/BC catalyst was developed by chemically modifying BC with sulfuric acid to improve mesoporous structure and surface area. When compared to the pristine Ni/BC catalyst, sulfuric activated Ni/BC catalyst has excellent mesopores and a high surface area, which increases the dispersion of Ni nanoparticles and hence improves the adsorptive effect and thus catalytic performance. A liquid phase hydrogenation of furfural to 2-methylfuran was performed over the developed 15 wt% Ni/BC catalyst. Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetic type models for adsorption of dissociative H2 were screened based on an R2 value greater than 99%, demonstrating that the experimental data satisfactorily fit to three plausible models: competitive (Model I), competitive at only one type of adsorption site (Model II), and non-competitive with two types of adsorption sites (Model III). With a correlation coefficient greater than 99% between the experimental rates and the predicted rate, Model III, which is a dual-site adsorption mechanism involving furfural adsorption and hydrogen dissociative adsorption and surface reaction, is the best fit. The Ni/BC catalyst demonstrated comparative performance and significant cost savings over previous catalysts; a value of 24.39 kJ mol−1 was estimated for activation energy, −11.43 kJ mol−1 for the enthalpy of adsorption for H2, and −5.86 kJ mol−1 for furfural. The developed Ni/BC catalyst demonstrated excellent stability in terms of conversion of furfural (96%) and yield of 2-methylfuran (54%) at the fourth successive experiments. Based on furfural conversion and yield of products, it appears that pores are constructed slowly during sulfuric acid activation of the biochar.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive