A Hierarchical Cache Architecture-Oriented Cache Management Scheme for Information-Centric Networking
Yichao Chao, Rui HanInformation-Centric Networking (ICN) typically utilizes DRAM (Dynamic Random Access Memory) to build in-network cache components due to its high data transfer rate and low latency. However, DRAM faces significant limitations in terms of cost and capacity, making it challenging to meet the growing demands for cache scalability required by increasing Internet traffic. Combining high-speed but expensive memory (e.g., DRAM) with large-capacity, low-cost storage (e.g., SSD) to construct a hierarchical cache architecture has emerged as an effective solution to this problem. However, how to perform efficient cache management in such architectures to realize the expected cache performance remains challenging. This paper proposes a cache management scheme for hierarchical cache architectures in ICN, which introduces a differentiated replica replacement policy to accommodate the varying request access patterns at different cache layers, thereby enhancing overall cache performance. Additionally, a probabilistic insertion-based SSD cache admission filtering mechanism is designed to control the SSD write load, addressing the issue of balancing SSD lifespan and space utilization. Extensive simulation results demonstrate that the proposed scheme exhibits superior cache performance and lower SSD write load under various workloads and replica placement strategies, highlighting its broad applicability to different application scenarios. Additionally, it maintains stable performance improvements across different cache capacity settings, further reflecting its good scalability.