DOI: 10.1190/geo2023-0189.1 ISSN: 0016-8033

A frequency-Hankel transform method to extract multimodal Rayleigh wave dispersion spectra from active and passive source surface wave data

Zhentao Yang, Yao-Chong Sun, Dazhou Zhang, Pen Han, Xiaofei Chen
  • Geochemistry and Petrology
  • Geophysics

Rayleigh wave dispersion energy spectra have been widely used to extract dispersion curves and invert for underground shear-wave velocity structures for engineering geophysics and seismology. We propose a frequency-Hankel (F-H) transform method to extract high-quality multimodal Rayleigh wave dispersion energy spectra from active and passive source Rayleigh wave data. The F-H transform method is inspired by the frequency-Bessel (F-J) transform method and considers the physical meaning of Green’s functions for Rayleigh wave dispersion analysis. The F-H transform method can naturally avoid crossed artefacts caused by converging waves on F-J spectrograms and obtains more multimodal dispersion spectra of the same quality with fewer Rayleigh wave data than the F-J transform method. Both synthetic and field Rayleigh wave data from active and passive sources for near-surface exploration and ambient noise tomography are used to demonstrate the validity, accuracy and applicability of the F-H transform method. The F-H transform method unifies the F-J transform method and its modifications for active and passive sources Rayleigh wave data. The F-H transform method is a robust and efficient multimodal Rayleigh wave dispersion analysis method for active and passive source Rayleigh wave data.

More from our Archive