A Framework for Fully Programmable Frequency-Encoded Quantum Networks Harnessing Multioutput Quantum Pulse Gates
Patrick Folge, Michael Stefszky, Benjamin Brecht, Christine SilberhornLinear optical quantum networks, consisting of a quantum input state and a multiport interferometer, are an important building block for many quantum technological concepts, e.g., Gaussian boson sampling. Here, we propose the implementation of such networks based on frequency conversion by utilizing a so-called multioutput quantum pulse gate (MQPG). This approach allows the resource-efficient and therefore scalable implementation of frequency-bin-based, fully programmable interferometers in a single spatial and polarization mode. Quantum input states for this network can be provided by utilizing the strong frequency entanglement of a type-0 parametric down-conversion (PDC) source. Here, we develop a theoretical framework to describe linear networks based on an MQPG and PDC and utilize it to investigate the limits and scalabilty of our approach.