A fiber-pigtailed quantum dot device generating indistinguishable photons at GHz clock-rates
Lucas Rickert, Kinga Żołnacz, Daniel A. Vajner, Martin von Helversen, Sven Rodt, Stephan Reitzenstein, Hanqing Liu, Shulun Li, Haiqiao Ni, Paweł Wyborski, Grzegorz Sęk, Anna Musiał, Zhichuan Niu, Tobias HeindelAbstract
Solid-state quantum light sources based on semiconductor quantum dots (QDs) are increasingly employed in photonic quantum information applications. Especially when moving towards real-world scenarios outside shielded lab environments, the efficient and robust coupling of nanophotonic devices to single-mode optical fibers offers substantial advantage by enabling “plug-and-play” operation. In this work we present a fiber-pigtailed cavity-enhanced source of flying qubits emitting single indistinguishable photons at clock-rates exceeding 1 GHz. This is achieved by employing a fully deterministic technique for fiber-pigtailing optimized QD-devices based on hybrid circular Bragg grating (hCBG) micro-cavities. The fabricated fiber-pigtailed hCBGs feature emission lifetimes of