A Digitalization Algorithm Based on the Voltage Waveform of the Multifunction Vehicle Bus
Yangtao Li, Haiquan Liang, Xiaodong Tan- Fluid Flow and Transfer Processes
- Computer Science Applications
- Process Chemistry and Technology
- General Engineering
- Instrumentation
- General Materials Science
The MVB is a kind of widely used vehicle-level bus, which is crucial for the normal operation of trains. However, the MVB bus contains device node terminals and the topology is complex, which makes fault location difficult. The voltage waveform of the MVB physical layer can reflect the electrical characteristics and fault characteristics of a network in real time and has the value of assisting the diagnosis of MVB network faults. Based on the characteristics of the MVB physical-layer voltage waveform, this paper studies the optimal sampling rate and feature-extraction algorithm of the MVB voltage waveform and the combination of the data of the data-link layer to assign accurate timestamps to waveform data, and finally presents a design for an MVB dual-mode data-acquisition platform with multiple sampling rates/test conditions. Experimental results show that the proposed algorithm can accurately extract waveform feature information under the optimal sampling rate of 62.5 MHz, which makes the collection of MVB voltage waveform data more reliable and practical.