DOI: 10.3390/rs16101676 ISSN: 2072-4292

A Deep Learning Classification Scheme for PolSAR Image Based on Polarimetric Features

Shuaiying Zhang, Lizhen Cui, Zhen Dong, Wentao An

Polarimetric features extracted from polarimetric synthetic aperture radar (PolSAR) images contain abundant back-scattering information about objects. Utilizing this information for PolSAR image classification can improve accuracy and enhance object monitoring. In this paper, a deep learning classification method based on polarimetric channel power features for PolSAR is proposed. The distinctive characteristic of this method is that the polarimetric features input into the deep learning network are the power values of polarimetric channels and contain complete polarimetric information. The other two input data schemes are designed to compare the proposed method. The neural network can utilize the extracted polarimetric features to classify images, and the classification accuracy analysis is employed to compare the strengths and weaknesses of the power-based scheme. It is worth mentioning that the polarized characteristics of the data input scheme mentioned in this article have been derived through rigorous mathematical deduction, and each polarimetric feature has a clear physical meaning. By testing different data input schemes on the Gaofen-3 (GF-3) PolSAR image, the experimental results show that the method proposed in this article outperforms existing methods and can improve the accuracy of classification to a certain extent, validating the effectiveness of this method in large-scale area classification.

More from our Archive