DOI: 10.3390/app15147835 ISSN: 2076-3417

A Data-Driven Approach for Generating Synthetic Load Profiles with GANs

Tsvetelina Kaneva, Irena Valova, Katerina Gabrovska-Evstatieva, Boris Evstatiev

The generation of realistic electrical load profiles is essential for advancing smart grid analytics, demand forecasting, and privacy-preserving data sharing. Traditional approaches often rely on large, high-resolution datasets and complex recurrent neural architectures, which can be unstable or ineffective when training data are limited. This paper proposes a data-driven framework based on a lightweight 1D Convolutional Wasserstein GAN with Gradient Penalty (Conv1D-WGAN-GP) for generating high-fidelity synthetic 24 h load profiles. The model is specifically designed to operate on small- to medium-sized datasets, where recurrent models often fail due to overfitting or training instability. The approach leverages the ability of Conv1D layers to capture localized temporal patterns while remaining compact and stable during training. We benchmark the proposed model against vanilla GAN, WGAN-GP, and Conv1D-GAN across four datasets with varying consumption patterns and sizes, including industrial, agricultural, and residential domains. Quantitative evaluations using statistical divergence measures, Real-vs-Synthetic Distinguishability Score, and visual similarity confirm that Conv1D-WGAN-GP consistently outperforms baselines, particularly in low-data scenarios. This demonstrates its robustness, generalization capability, and suitability for privacy-sensitive energy modeling applications where access to large datasets is constrained.