Yihan Zhang, Yubing Hu, Yunuen Montelongo, Mintin Hsu, Jeff Blyth, Nan Jiang, Ali K. Yetisen

A Conformable Holographic Sensing Bandage for Wound Monitoring

  • Electrochemistry
  • Condensed Matter Physics
  • Biomaterials
  • Electronic, Optical and Magnetic Materials

AbstractChronic wound monitoring can provide personalized pathophysiological information for wound management and treatment. Continuously monitoring the wound milieu via the holographic pH sensor can reflect the wound healing processes. However, the integration with wearable devices is hindered by its inherently restricted interrogation angle dependency within 5°. Herein, a ball bearing‐based double photopolymerization method is developed to fabricate holographic pH sensors with a broader interrogation angle range of 15°–60° in wound exudates. The fabricated holographic pH sensor is then integrated with the flexible ultrathin polyurethane substrate, which replays a total Bragg peak shift of approximately 150 nm with physiological pH changes from 7.00 to 8.75. The conformable holographic pH sensing bandages demonstrate the ability to quantify the pH value under various bending manipulations, simulating the mounting on the body surface. The reversibility in artificial wound exudate demonstrates the durability and capability of real‐time pH monitoring in the wound milieu with minimal effect on the replay wavelength. The addition of electrolytes, albumin, urea, uric acid, lactate, and glucose does not interfere with the readout over the physiological pH range of wound exudates. The obtained conformable holographic sensing bandage benefits the wound healing process monitoring through colorimetric interrogation at point‐of‐care (POC) settings.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive