A Circularly Polarized Non-Resonant Slotted Waveguide Antenna Array for Wide-Angle Scanning
Guodong Han, Weihang LiuA compact circularly polarized non-resonant slotted waveguide antenna array is proposed with the aim of achieving wide-angle scanning, circular polarization, and low side-lobe levels. The designed antenna demonstrates a scanning range of +11° to +13° in the frequency domain and a beam scanning range of −45° to +45° in the phase domain. This design exhibits significant advantages for low-cost two-dimensional electronic scanning circularly polarized arrays. It employs a compact element that reduces the aperture area by 50% compared to traditional circular polarization cavities. Additionally, the staggered array method is employed to achieve an element spacing of 0.57λ within the azimuth plane. Isolation gaps were introduced into the array to enhance the circular polarization performance of non-resonant arrays. The Taylor synthesis method was employed to reduce the side-lobe levels. A prototype was designed, fabricated, and measured. The results indicate superior radiation efficiency, favorable VSWR levels, and an axis ratio maintenance below 3 dB across the scanning range. The proposed antenna and methodology effectively broaden the beam scanning angle of circularly polarized slotted waveguide array antennas.