DOI: 10.3390/electronics13244926 ISSN: 2079-9292

A Blockchain Multi-Chain Federated Learning Framework for Enhancing Security and Efficiency in Intelligent Unmanned Ports

Zeqiang Xie, Zijian Li

The integration of blockchain and federated learning (FL) has emerged as a promising solution to address data privacy and security challenges in Intelligent Unmanned Ports (IUPs). However, existing blockchain federated learning (BFL) frameworks encounter significant limitations, including high latency, inefficient data processing, and limited scalability, particularly in scenarios with sparse and distributed data. This paper introduces a novel multi-chain federated learning (MFL) framework to overcome these challenges. The proposed MFL architecture interconnects multiple BFL chains to facilitate the secure and efficient aggregation of data across distributed devices. The framework enhances privacy and efficiency by transmitting aggregated model updates rather than raw data. A low-frequency consensus mechanism is employed to improve performance, leveraging game theory for representative selection to optimize model aggregation while reducing inter-chain communication overhead. The experimental results demonstrate that the MFL framework significantly outperforms traditional BFL in terms of accuracy, latency, and system efficiency, particularly under the conditions of high data sparsity and network latency. These findings highlight the potential of MFL to provide a scalable and secure solution for decentralized learning in IUP environments, with broader applicability to other distributed systems such as the Industrial Internet of Things (IIoT).

More from our Archive