DOI: 10.3390/chemosensors11090475 ISSN:

A 3D-Printed Electrochemical Immunosensor Employing Cd/Se ZnS QDs as Labels for the Rapid and Ultrasensitive Detection of Salmonella typhimurium in Poultry Samples

Michailia Angelopoulou, Dimitra Kourti, Maria Mertiri, Panagiota Petrou, Sotirios Kakabakos, Christos Kokkinos
  • Physical and Theoretical Chemistry
  • Analytical Chemistry

Salmonella is one of the leading causes of foodborne illnesses worldwide, with poultry products being a major source of contamination. Thus, the detection of salmonella in commercial poultry products is crucial to minimize the effects on public health. Electrochemical sensors are promising tools for bacteria detection due to their sensitivity, simplicity, and potential for on-site analysis. In this work, a three-dimensional (3D) printed electrochemical immunosensor for the determination of Salmonella typhimurium in fresh chicken through a sandwich immunoassay employing biotinylated anti-S. typhimurium antibody followed by streptavidin labeled with Cd/Se ZnS quantum dots (QDs) is presented. The device features three carbon-black polylactic acid electrodes and a holder, and the quantification of S. typhimurium is performed by anodic stripping voltametric (ASV) determination of the Cd(II) released after acidic dissolution of the QDs. To enhance sensitivity, an electroplated bismuth film was deposited on the working electrode, achieving a detection limit of 5 cfu/mL in a total assay time of 25 min, whereas 5 h of sample pre-enrichment was required for the detection of 1 cfu/25 mL of chicken rinse and chicken broth. The method is accurate, with %recovery values ranging from 93.3 to 113% in fresh chicken samples, and repeatable with intra- and inter- assay coefficient of variations <2 and 5%, respectively, indicating the suitability of the proposed immunosensor for the detection of S. typhimurium at the point-of-need.

More from our Archive