Jushuang Qin, Menglu Ma, Yutong Zhu, Baoguo Wu, Xiaohui Su

3PG-MT-LSTM: A Hybrid Model under Biomass Compatibility Constraints for the Prediction of Long-Term Forest Growth to Support Sustainable Management

  • Forestry

Climate change is posing new challenges to forestry management practices. Thinning reduces competitive pressure in the forest by repeatedly reducing the tree density of forest stands, thereby increasing the productivity of plantations. Considering the impact of thinning on vegetation and physiological and ecological traits, for this study, we used Norway spruce (Picea abies) data from three sites in the PROFOUND dataset to parameterize the 3-PG model in stages. The calibrated 3-PG model was used to simulate the stand diameter at breast height and the stem, root, and leaf biomass data on a monthly scale. The 3PG-MT-LSTM model uses 3-PG simulation data as the input variable. The model uses a long short-term memory neural network (LSTM) as a shared layer and introduces multi-task learning (MTL). Based on the compatibility rules, the interpretability of the model was further improved. The models were trained using single-site and multi-site data, respectively, and multiple indicators were used to evaluate the model accuracy and generalization ability. Our preliminary results show that, compared with the process model and LSTM algorithm without MTL and compatibility rules, the hybrid model has higher biomass simulation accuracy and shows a more realistic biomass response to environmental driving factors. To illustrate the potential applicability of the model, we applied light (10%), moderate (20%), and heavy thinning (30%) at intervals of 10, 15, 20, 25, 30 years. Then, we used three climate scenarios—SSP1-2.6, SSP2-4.5, and SSP5-8.5—to simulate the growth of Norway spruce. The hybrid model can effectively capture the impact of climate change and artificial management on stand growth. In terms of climate, temperature and solar radiation are the most important factors affecting forest growth, and under warm conditions, the positive significance of forest management is more obvious. In terms of forest management practices, less frequent light-to-moderate thinning can contribute more to the increase in forest carbon sink potential; high-intensity thinning can support large-diameter timber production. In summary, moderate thinning should be carried out every 10 years in the young-aged forest stage. It is also advisable to perform light thinning procedures after the forest has progressed into a middle-aged forest stage. This allows for a better trade-off of the growth relationship between stand yield and diameter at breast height (DBH). The physical constraint-based hybrid modeling approach is a practical and effective tool. It can be used to measure long-term dynamic changes in forest production and then guide management activities such as thinning to achieve sustainable forest management.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive