Bryan A. Nerger, Sumit Sinha, Nathan N. Lee, Maria Cheriyan, Pascal Bertsch, Christopher P. Johnson, L. Mahadevan, Joseph V. Bonventre, David J. Mooney

3D Hydrogel Encapsulation Regulates Nephrogenesis in Kidney Organoids

  • Mechanical Engineering
  • Mechanics of Materials
  • General Materials Science

AbstractStem cell‐derived kidney organoids contain nephron segments that recapitulate morphological and functional aspects of the human kidney. However, directed differentiation protocols for kidney organoids are largely conducted using biochemical signals to control differentiation. Here, the hypothesis that mechanical signals regulate nephrogenesis is investigated in 3D culture by encapsulating kidney organoids within viscoelastic alginate hydrogels with varying rates of stress relaxation. Tubular nephron segments are significantly more convoluted in kidney organoids differentiated in encapsulating hydrogels when compared with those in suspension culture. Hydrogel viscoelasticity regulates the spatial distribution of nephron segments within the differentiating kidney organoids. Consistent with these observations, a particle‐based computational model predicts that the extent of deformation of the hydrogel–organoid interface regulates the morphology of nephron segments. Elevated extracellular calcium levels in the culture medium, which can be impacted by the hydrogels, decrease the glomerulus‐to‐tubule ratio of nephron segments. These findings reveal that hydrogel encapsulation regulates nephron patterning and morphology and suggest that the mechanical microenvironment is an important design variable for kidney regenerative medicine.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive