DOI: 10.3390/electronics12153352 ISSN: 2079-9292

185–215 GHz CMOS Frequency Doubler with a Single Row Staggered Distribution Layout Design

Ruibing Dong, Chengwu You
  • Electrical and Electronic Engineering
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing
  • Control and Systems Engineering

This paper presents a 220 GHz × 2 amplifier–doubler chain composed of a rat-race balun, a 6-stage driver amplifier, and a frequency doubler. The presented amplifier–doubler chain was fabricated in commercial 40 nm bulk CMOS technology. The maximum cutoff frequency fmax for the NMOS transistor produced by this manufacturing process was 290 GHz. The saturation output power of the six-stage driver amplifier at 110 GHz was 11.5 dBm. The transistor of the frequency doubler consisted of a single-row interleaved Poly-Diffusion Contact balancing structure. Theoretically, the single-row interleaved Poly-Diffusion Contact balancing structure was able to effectively avoid parasitic components. The simulated results demonstrate that the presented structure achieves a higher output than the conventional designs. Based on these measured results, the presented amplifier–doubler chain provides a peak output power of 7.9 dBm at 200 GHz and a 3-dB bandwidth of 30 GHz. Based on the comparison with other reported results, the presented amplifier–doubler chain provides the highest output power among reported frequency doublers fabricated in CMOS technology.

More from our Archive