Three-dimensional power sparse code division non-orthogonal multiple access scheme with constellation pair mapping
Shuaidong Chen, Jianxin Ren, Bo Liu, Yaya Mao, Xiangyu Wu, Rahat Ullah, Yu Bai, Jianye Zhao, Yibin Wan, Yiming Ma, Wenchao Xia, Lilong Zhao, Ying Li, Feng Wang- Atomic and Molecular Physics, and Optics
This paper proposes a three-dimensional power sparse code division non-orthogonal multiple access (3D-PSCD-NOMA) scheme with 3D constellation pair mapping. The proposed sparse code is based on a balanced incomplete block design (BIBD). Its correlation matrix performs the overall signal mapping of multi-user information. Power multiplexing is realized by overlaying multi-level power signals with different path losses through pair mapping. Compared with the conventional 2D standard square 32 Quadrature Amplitude Modulation (QAM), the proposed 3D constellation pair mapping can improve the constellation points’ minimum Euclidean distance (MED) by 17.7%, which is beneficial for the performance of the system. Based on obtaining the optimal power distribution ratio (PDR) for different schemes, a 3D-PSCD-NOMA signal with a rate of 15.22 Gb/s over a 25 km single-mode fiber (SMF) is experimentally performed. The experimental results show that 3D-PSCD-NOMA has a clear superiority. At the same rate, 3D-PSCD-NOMA2 can obtain a sensitivity gain of about 1.6 dB and 1.9 dB over the conventional 2D constellation. Moreover, 3D-PSCD-NOMA reduces the system's peak-to-average power ratio (PAPR) by 1.3 dB. The difference in sensitivity of the system before and after sparse code is about 0.15 dB, and no significant degradation occurred. Due to its advantages in transmission performance, 3D-PSCD-NOMA is a potential solution for future optical access systems.