DOI: 10.1126/science.1232245 ISSN:

Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma

Peter W. Lewis, Manuel M. Müller, Matthew S. Koletsky, Francisco Cordero, Shu Lin, Laura A. Banaszynski, Benjamin A. Garcia, Tom W. Muir, Oren J. Becher, C. David Allis
  • Multidisciplinary

EZ Inhibition

Missense mutations in the core constituents of the genome packaging material, chromatin, have been implicated in several of human cancers. Nucleosomes are made up of histones, and a mutation of lysine 27 (K27) to methionine in the N-terminal tail of histone variants H3.3 and H3.1 has been identified in various pediatric gliomas. Lewis et al. (p. 857 , published online 28 March; see the Perspective by Morgan and Shilatifard ) show that the polycomb enzyme complex, which can epigenetically modify K27 by addition of a methyl group—and which is often a silencing signal—is itself potently inhibited by replacement of the H3.3/3.1 K27 by methionine. The inhibition of the EZH2 subunit causes an overall reduction of K27 methylation. Methionine mutants of other methylated lysine residues in histone H3 cause similar reductions in methylation levels of the cognate lysine, altering the epigenetic profiles of such cancer cells.

More from our Archive