DOI: 10.3390/ijms25010432 ISSN: 1422-0067

Exogenous IL-17A Alleviates Social Behavior Deficits and Increases Neurogenesis in a Murine Model of Autism Spectrum Disorders

Yehoshua Willinger, Daniella R. Friedland Cohen, Gadi Turgeman
  • Inorganic Chemistry
  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Computer Science Applications
  • Spectroscopy
  • Molecular Biology
  • General Medicine
  • Catalysis

Among the proposed mechanisms for autism spectrum disorders (ASD) is immune dysregulation. The proinflammatory cytokine Interleukine-17A (IL-17A) was shown to play a key role in mediating immune-related neurodevelopmental impairment of social behavior. Nevertheless, post-developmental administration of IL-17A was found to increase social behavior. In the present study, we explored the effect of post-developmental administration of IL-17A on ASD-like behaviors induced by developmental exposure to valproic acid (VPA) at postnatal day 4. At the age of seven weeks, VPA-exposed mice were intravenously injected twice with recombinant murine IL-17A (8 μg), and a week later, they were assessed for ASD-like behavior. IL-17A administration increased social behavior and alleviated the ASD-like phenotype. Behavioral changes were associated with increased serum levels of IL-17 and Th17-related cytokines. Exogenous IL-17A also increased neuritogenesis in the dendritic tree of doublecortin-expressing newly formed neurons in the dentate gyrus. Interestingly, the effect of IL-17A on neuritogenesis was more noticeable in females than in males, suggesting a sex-dependent effect of IL-17A. In conclusion, our study suggests a complex role for IL-17A in ASD. While contributing to its pathology at the developmental stage, IL-17 may also promote the alleviation of behavioral deficits post-developmentally by promoting neuritogenesis and synaptogenesis in the dentate gyrus.

More from our Archive