DOI: 10.1126/science.1251086 ISSN:

Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity

Sadia Saeed, Jessica Quintin, Hindrik H. D. Kerstens, Nagesha A. Rao, Ali Aghajanirefah, Filomena Matarese, Shih-Chin Cheng, Jacqueline Ratter, Kim Berentsen, Martijn A. van der Ent, Nilofar Sharifi, Eva M. Janssen-Megens, Menno Ter Huurne, Amit Mandoli, Tom van Schaik, Aylwin Ng, Frances Burden, Kate Downes, Mattia Frontini, Vinod Kumar, Evangelos J. Giamarellos-Bourboulis, Willem H. Ouwehand, Jos W. M. van der Meer, Leo A. B. Joosten, Cisca Wijmenga, Joost H. A. Martens, Ramnik J. Xavier, Colin Logie, Mihai G. Netea, Hendrik G. Stunnenberg
  • Multidisciplinary

A BLUEPRINT of immune cell development

To determine the epigenetic mechanisms that direct blood cells to develop into the many components of our immune system, the BLUEPRINT consortium examined the regulation of DNA and RNA transcription to dissect the molecular traits that govern blood cell differentiation. By inducing immune responses, Saeedet al.document the epigenetic changes in the genome that underlie immune cell differentiation. Chenget al.demonstrate that trained monocytes are highly dependent on the breakdown of sugars in the presence of oxygen, which allows cells to produce the energy needed to mount an immune response. Chenet al.examine RNA transcripts and find that specific cell lineages use RNA transcripts of different length and composition (isoforms) to form proteins. Together, the studies reveal how epigenetic effects can drive the development of blood cells involved in the immune system.

Science, this issue10.1126/science.1251086,10.1126/science.1250684,10.1126/science.1251033

More from our Archive