DeLuxing: Deep Lagrangian Underestimate Fixing for Column-Generation-Based Exact Methods
Yu YangAdvancing Column Generation by a Novel Variable Fixing Method
In the paper titled “DeLuxing: Deep Lagrangian Underestimate Fixing for Column-Generation-Based Exact Methods,” Dr. Yu Yang introduces DeLuxing—an innovative variable-fixing technique that significantly advances column-generation-based exact methods for solving large-scale optimization problems, particularly vehicle routing problems (VRPs). DeLuxing leverages a novel linear programming formulation with a small subset of the enumerated variables, which is theoretically guaranteed to yield qualified dual solutions for computing Lagrangian underestimates. By eliminating over 75% of the unnecessary variables, DeLuxing drastically boosts computational efficiency, doubling the size of CMTVRPTW (capacitated multitrip vehicle routing problem with time windows) instances that can be solved optimally. Additionally, this breakthrough accelerates top VRP solvers like RouteOpt by up to 71%. The core concept underpinning DeLuxing extends to broader contexts such as variable type relaxation and cutting plane addition, achieving an additional 25% speedup for difficult instances.