DOI: 10.3390/bioengineering12070686 ISSN: 2306-5354

Automated UPDRS Gait Scoring Using Wearable Sensor Fusion and Deep Learning

Xiangzhi Liu, Xiangliang Zhang, Juan Li, Wenhao Pan, Yiping Sun, Shuanggen Lin, Tao Liu

The quantitative assessment of Parkinson’s disease (PD) is critical for guiding diagnosis, treatment, and rehabilitation. Conventional clinical evaluations—heavily dependent on manual rating scales such as the Unified Parkinson’s Disease Rating Scale (UPDRS)—are time-consuming and prone to inter-rater variability. In this study, we propose a fully automated UPDRS gait-scoring framework. Our method combines (a) surface electromyography (EMG) signals and (b) inertial measurement unit (IMU) data into a single deep learning model. Our end-to-end network comprises three specialized branches—a diagnosis head, an evaluation head, and a balance head—whose outputs are integrated via a customized fusion-detection module to emulate the multidimensional assessments performed by clinicians. We validated our system on 21 PD patients and healthy controls performing a simple walking task while wearing a four-channel EMG array on the lower limbs and 2 shank-mounted IMUs. It achieved a mean classification accuracy of 92.8% across UPDRS levels 0–2. This approach requires minimal subject effort and sensor setup, significantly cutting clinician workload associated with traditional UPDRS evaluations while improving objectivity. The results demonstrate the potential of wearable sensor-driven deep learning methods to deliver rapid, reliable PD gait assessment in both clinical and home settings.

More from our Archive