DOI: 10.1515/tjj-2021-0007 ISSN: 0334-0082

An improved compact propulsion system model based on batch normalize deep neural network

Juan Fang, Qiangang Zheng, Haibo Zhang, Chongwen Jin
  • Aerospace Engineering

Abstract

Aero-engine on-board steady state model is an important part of many advanced engine control algorithms. In order to build a high accuracy and real-time steady-state onboard model in a large envelope, an ICPSM (improved compact propulsion system model) based on batch normalize neural network is proposed in this paper. Compared with piecewise linearization model and support vector machine model, conventional CPSM which is mainly composed of baseline model and nonlinear sub model has the advantages of high real-time performance and small data storage. However, as the similarity conversion error increases with the distance from the design point, the cumulative error of the conventional baseline model also increases, which makes the model unable to maintain high accuracy in the full envelope. Thus, a high accuracy baseline model in full envelope based on batch normalize neural network is proposed in this paper. The simulation result shows that compared with the conventional compact propulsion system model, the percentage error of parameters of the improved compact propulsion system model based on the batch neural network is reduced by two times, the single step operation time is reduced by 18%, and the data storage of the onboard model is reduced as well.

More from our Archive