DOI: 10.3390/en16155740 ISSN: 1996-1073

A New Post-Fault Reconfiguration Strategy under Open-Phase Operation Conditions of Asymmetrical Double-Star Induction Machines

Koussaila Iffouzar, Mohamed-Fouad Benkhoris, Bessam Amrouche, Azeddine Houari, Kaci Ghedamsi, Ali Djerioui
  • Energy (miscellaneous)
  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Control and Optimization
  • Engineering (miscellaneous)
  • Building and Construction

The fault tolerance proprieties of multiphase induction machines make them candidate technologies for future electrified transport systems. Indeed, the use of multiphase drives is primarily recommended for their redundancy, which allows them to handle increasing power demands as well as provide fault-tolerant operation. One of the most common failures in polyphase induction machines is open-phase fault (OPF). Under this degraded mode, machine performance deteriorates with increased torque ripples and copper losses. This work investigates the fault-tolerant operation of dual star induction machines (DSIM) with two connected neutral points in which a new post-fault operation technique is introduced to manage the OPFs. The machine was modeled on the natural reference frame, and no transformations were used. The phase opening is caused by inserting a high-value resistor in series with the faulty phase, which cancels the current flowing in the latter. A post-fault reconfiguration strategy that reorganizes the power converter in order to cancel torque ripples by exploiting the principle of multi-biphase modeling of the DSIM is proposed. The performance of the proposed reconfiguration strategy was verified through detailed simulation results.

More from our Archive