S. Eierman, Z. Peng, A. Calvin, M. Brzeczek, L. Satterthwaite, D. Patterson

A cryogenic ion trap for single molecule vibrational spectroscopy

  • Instrumentation

We report on an ion trapping system for performing a novel form of cryogenic messenger spectroscopy with single molecule sensitivity. The system features a cryogenic radio-frequency ion trap loaded with single analyte molecules via a quadrupole mass filter. We demonstrate the ability to controllably attach inert gas particles to buffer gas cooled, trapped molecular ions. Sympathetic cooling by co-trapped, laser cooled 88Sr+ further reduces the translational temperature of trapped molecules to the millikelvin regime. We verify the presence of cryogenic “tags” via non-destructive optical mass spectrometry and selectively remove these adducts by resonantly driving vibrational transitions in the tagged molecular ions. This enables us to derive the vibrational spectrum of a single analyte molecule from the frequency dependence of the tag detachment rate. We have demonstrated these capabilities by measuring transitions in the C–H stretching region for single cationic fragments of both indole (C8H7N) and 1,3-benzodioxole (C6H4O2CH2). These capabilities are not reliant on a specific molecular level structure and thus constitute a general, non-destructive method for vibrational spectroscopy of individual molecular ions.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive